12,382 research outputs found

    The Origin of Radio Emission in Low-Luminosity Active Galactic Nuclei: Jets, Accretion Flows, or Both?

    Get PDF
    The low-luminosity active galactic nuclei in NGC 3147, NGC 4203, and NGC 4579 have been imaged at four frequencies with the Very Long Baseline Array. The galaxies are unresolved at all frequencies, with size upper limits of 10310410^3-10^4 times the Schwarzschild radii of their central massive black holes. The spectral indices between 1.7 and 5.0 GHz range from 0.2 to 0.4; one and possibly two of the galaxies show spectral turnovers between 5.0 and 8.4 GHz. The high brightness temperatures (>109> 10^9 K) and relatively straight spectra imply that free-free emission and/or absorption cannot account for the slightly inverted spectra. Although the radio properties of the cores superficially resemble predictions for advection-dominated accretion flows, the radio luminosities are too high compared to the X-ray luminosities. We suggest that the bulk of the radio emission is generated by a compact radio jet, which may coexist with a low radiative efficiency accretion flow.Comment: To appear in ApJ (Letters). 4 page

    Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components

    Full text link
    By using the Green-function concept of quantization of the electromagnetic field in dispersing and absorbing media, the quantized field in the presence of a dispersing and absorbing dielectric multilayer plate is studied. Three-dimensional input-output relations are derived for both amplitude operators in the k{\bf k}-space and the field operators in the coordinate space. The conditions are discussed, under which the input-output relations can be expressed in terms of bosonic operators. The theory applies to both (effectively) free fields and fields, created by active atomic sources inside and/or outside the plate, including also evanescent-field components.Comment: 14 pages, 1 figur

    Aspects of U-duality in BLG models with Lorentzian metric 3-algebras

    Full text link
    In our previous paper, it was shown that BLG model based on a Lorentzian metric 3-algebra gives Dp-brane action whose worldvolume is compactified on torus T^d (d=p-2). Here the 3-algebra was a generalized one with d+1 pairs of Lorentzian metric generators and expressed in terms of a loop algebra with central extensions. In this paper, we derive the precise relation between the coupling constant of the super Yang-Mills, the moduli of T^d and some R-R flux with VEV's of ghost fields associated with Lorentzian metric generators. In particular, for d=1, we derive the Yang-Mills action with theta term and show that SL(2,Z) Montonen-Olive duality is realized as the rotation of two VEV's. Furthermore, some moduli parameters such as NS-NS 2-form flux are identified as the deformation parameters of the 3-algebras. By combining them, we recover most of the moduli parameters which are required by U-duality symmetry.Comment: 27 pages, v2: minor correction

    Heisenberg quantization for the systems of identical particles and the Pauli exclusion principle in noncommutative spaces

    Get PDF
    We study the Heisenberg quantization for the systems of identical particles in noncommtative spaces. We get fermions and bosons as a special cases of our argument, in the same way as commutative case and therefore we conclude that the Pauli exclusion principle is also valid in noncommutative spaces.Comment: 8 pages, 1 figur

    Properties of Active Galaxies Deduced from H I Observations

    Full text link
    We completed a new survey for H I emission for a large, well-defined sample of 154 nearby (z < 0.1) galaxies with type 1 AGNs. We make use of the extensive database presented in a companion paper to perform a comprehensive appraisal of the cold gas content in active galaxies and to seek new strategies to investigate the global properties of the host galaxies and their relationship to their central black holes (BHs). We show that the BH mass obeys a strong, roughly linear relation with the host galaxy's dynamical mass. BH mass follows a looser, though still highly significant, correlation with the maximum rotation velocity of the galaxy, as expected from the known scaling between rotation velocity and central velocity dispersion. Neither of these H I-based correlations is as tight as the more familiar relations between BH mass and bulge luminosity or velocity dispersion, but they offer the advantage of being insensitive to the glare of the nucleus and therefore are promising new tools for probing the host galaxies of both nearby and distant AGNs. We present evidence for substantial ongoing BH growth in the most actively accreting AGNs. In these nearby systems, BH growth appears to be delayed with respect to the assembly of the host galaxy but otherwise has left no detectable perturbation to its mass-to-light ratio or its global gas content. The host galaxies of type 1 AGNs, including those luminous enough to qualify as quasars, are generally gas-rich systems, possessing a cold interstellar medium reservoir at least as abundant as that in inactive galaxies of the same morphological type. This calls into question current implementations of AGN feedback in models of galaxy formation that predict strong cold gas depletion in unobscured AGNs. (Abridged)Comment: To appear in ApJ; 14 page

    Macroscopic dynamics of a trapped Bose-Einstein condensate in the presence of 1D and 2D optical lattices

    Full text link
    The hydrodynamic equations of superfluids for a weakly interacting Bose gas are generalized to include the effects of periodic optical potentials produced by stationary laser beams. The new equations are characterized by a renormalized interaction coupling constant and by an effective mass accounting for the inertia of the system along the laser direction. For large laser intensities the effective mass is directly related to the tunneling rate between two consecutive wells. The predictions for the frequencies of the collective modes of a condensate confined by a magnetic harmonic trap are discussed for both 1D and 2D optical lattices and compared with recent experimental data.Comment: 4 pages, 2 postscript figure

    Branes from a non-Abelian (2,0) tensor multiplet with 3-algebra

    Full text link
    In this paper, we study the equations of motion for non-Abelian N=(2,0) tensor multiplets in six dimensions, which were recently proposed by Lambert and Papageorgakis. Some equations are regarded as constraint equations. We employ a loop extension of the Lorentzian three-algebra (3-algebra) and examine the equations of motion around various solutions of the constraint equations. The resultant equations take forms that allow Lagrangian descriptions. We find various (5+d)-dimensional Lagrangians and investigate the relation between them from the viewpoint of M-theory duality.Comment: 44+1 pages, reference added, typos corrected, and several discussions added; v3, reference added, many typos corrected, the language improved; v4, some typos and references corrected, final version to appear in J. Phys.

    Is the brick-wall model unstable for a rotating background?

    Get PDF
    The stability of the brick wall model is analyzed in a rotating background. It is shown that in the Kerr background without horizon but with an inner boundary a scalar field has complex-frequency modes and that, however, the imaginary part of the complex frequency can be small enough compared with the Hawking temperature if the inner boundary is sufficiently close to the horizon, say at a proper altitude of Planck scale. Hence, the time scale of the instability due to the complex frequencies is much longer than the relaxation time scale of the thermal state with the Hawking temperature. Since ambient fields should settle in the thermal state in the latter time scale, the instability is not so catastrophic. Thus, the brick wall model is well defined even in a rotating background if the inner boundary is sufficiently close to the horizon.Comment: Latex, 17 pages, 1 figure, accepted for publication in Phys. Rev.

    Retaining Expression on De-identified Faces

    Get PDF
    © Springer International Publishing AG 2017The extensive use of video surveillance along with advances in face recognition has ignited concerns about the privacy of the people identifiable in the recorded documents. A face de-identification algorithm, named k-Same, has been proposed by prior research and guarantees to thwart face recognition software. However, like many previous attempts in face de-identification, kSame fails to preserve the utility such as gender and expression of the original data. To overcome this, a new algorithm is proposed here to preserve data utility as well as protect privacy. In terms of utility preservation, this new algorithm is capable of preserving not only the category of the facial expression (e.g., happy or sad) but also the intensity of the expression. This new algorithm for face de-identification possesses a great potential especially with real-world images and videos as each facial expression in real life is a continuous motion consisting of images of the same expression with various degrees of intensity.Peer reviewe

    What Powers the Compact Radio Emission in Nearby Elliptical and S0 Galaxies?

    Full text link
    Many nearby early-type (elliptical and S0) galaxies contain weak (milli-Jansky level) nuclear radio sources on scales a few hundred parsecs or less. The origin of the radio emission, however, has remained unclear, especially in volume-limited samples that select intrinsically less luminous galaxies. Both active galactic nuclei and nuclear star formation have been suggested as possible mechanisms for producing the radio emission. This paper utilizes optical spectroscopic information to address this issue. A substantial fraction of the early-type galaxies surveyed with the Very Large Array by Wrobel & Heeschen (1991) exhibits detectable optical emission lines in their nuclei down to very sensitive limits. Comparison of the observed radio continuum power with that expected from the thermal gas traced by the optical emission lines implies that the bulk of the radio emission is nonthermal. Both the incidence and the strength of optical line emission correlate with the radio power. At a fixed line luminosity, ellipticals have stronger radio cores than S0s. The relation between radio power and line emission observed in this sample is consistent with the low-luminosity extension of similar relations seen in classical radio galaxies and luminous Seyfert nuclei. A plausible interpretation of this result is that the weak nuclear sources in nearby early-type galaxies are the low-luminosity counterparts of more powerful AGNs. The spectroscopic evidence supports this picture. Most of the emission-line objects are optically classified as Seyfert nuclei or low-ionization nuclear emission-line regions (LINERs), the majority of which are likely to be accretion-powered sources.Comment: LaTex, 16 pages including embedded figures. Accepted for publication in the Astrophysical Journa
    corecore